Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Angew Chem Int Ed Engl ; 63(15): e202401779, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38363076

RESUMO

The Li3MX6 compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-Li3ScCl6 using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P63mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-Li3ScCl6 and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known Li3MX6 family further revealed that the cation/anion radius ratio, rM/rX, is the factor that determines which anion sublattice is formed and that in γ-Li3ScCl6, the difference in compressibility between Sc and Cl exceeds the ccp rM/rX threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-Li3ScCl6 demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

2.
J Environ Sci (China) ; 139: 496-515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105072

RESUMO

Birnessite is ubiquitous in the natural environment where heavy metals are retained and easily transformed. The surface properties and structure of birnessite change with the changes in external environmental conditions, which also affects the fate of heavy metals. Clarifying the effect and mechanism of the birnessite phase transition process on heavy metals is the key to taking effective measures to prevent and control heavy metal pollution. Therefore, the four transformation pathways of birnessite are summarized first in this review. Second, the relationship between transformation pathways and environmental conditions is proposed. These relevant environmental conditions include abiotic (e.g., co-existing ions, pH, oxygen pressure, temperature, electric field, light, aging, pressure) and biotic factors (e.g., microorganisms, biomolecules). The phase transformation is achieved by the key intermediate of Mn(III) through interlayer-condensation, folding, neutralization-disproportionation, and dissolution-recrystallization mechanisms. The AOS (average oxidation state) of Mn and interlayer spacing are closely correlated with the phase transformation of birnessite. Last but not least, the mechanisms of heavy metals immobilization in the transformation process of birnessite are summed up. They involve isomorphous substitution, redox, complexation, hydration/dehydration, etc. The transformation of birnessite and its implication on heavy metals will be helpful for understanding and predicting the behavior of heavy metals and the crucial phase of manganese oxides/hydroxides in natural and engineered environments.


Assuntos
Manganês , Metais Pesados , Manganês/química , Adsorção , Metais Pesados/química , Óxidos/química , Compostos de Manganês/química , Oxirredução
3.
Angew Chem Int Ed Engl ; 63(6): e202318792, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117669

RESUMO

Electroreduction of nitric oxide (NO) to NH3 (NORR) has gained extensive attention for the sake of low carbon emission and air pollutant treatment. Unfortunately, NORR is greatly hindered by its sluggish kinetics, especially under low concentrations of NO. Herein, we developed a chlorine (Cl) vacancy strategy to overcome this limitation over FeOCl nanosheets (FeOCl-VCl ). Density functional theory (DFT) calculations revealed that the Cl vacancy resulted in defective Fe with sharp d-states characteristics in FeOCl-VCl to enhance the absorption and activation of NO. In situ X-ray absorption near-edge structure (XANES) and attenuated total reflection-infrared spectroscopy (ATR-IR) verified the lower average oxidation state of defective Fe to enhance the electron transfer for NO adsorption/activation and facilitate the generation of key NHO and NHx intermediates. As a result, the FeOCl-VCl exhibited superior NORR activities with the NH3 Faradaic efficiency up to 91.1 % while maintaining a high NH3 yield rate of 455.4 µg cm-2 h-1 under 1.0 vol % NO concentration, competitive with those of previously reported literatures under higher NO concentration. Further, the assembled Zn-NO battery utilizing FeOCl-VCl as cathode delivered a record peak power density of 6.2 mW cm-2 , offering a new route for simultaneous NO removal, NH3 production, and energy supply.

4.
Eco Environ Health ; 2(3): 176-183, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38074990

RESUMO

Antimony (Sb) in natural water has long-term effects on both the ecological environment and human health. Iron mineral phase transformation (IMPT) is a prominent process for removing Sb(V) from natural water. However, the importance of IMPT in eliminating Sb remains uncertain. This study examined the various Sb-Fe binding mechanisms found in different IMPT pathways in natural water, shedding light on the underlying mechanisms. The study revealed that the presence of goethite (Goe), hematite (Hem), and magnetite (Mag) significantly affected the concentration of Sb(V) in natural water. Elevated pH levels facilitated higher Fe content in iron solids but impeded the process of removing Sb(V). To further our understanding, polluted natural water samples were collected from various locations surrounding Sb smelter sites. Results confirmed that converting ferrihydrite (Fhy) to Goe significantly reduced Sb levels (<5 µg/L) in natural water. The emergence of secondary iron phases resulted in greater electrostatic attraction and stabilized surface complexes, which was the most likely cause of the decline of Sb concentration in natural water. The comprehensive findings offer new insights into the factors governing IMPT as well as the Sb(V) behavior control.

5.
Angew Chem Int Ed Engl ; 62(46): e202305651, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37612240

RESUMO

Tetrafluoromethane (CF4 ), the simplest perfluorocarbon (PFC), has the potential to exacerbate global warming. Catalytic hydrolysis is a viable method to degrade CF4 , but fluorine poisoning severely restricts both the catalytic performance and catalyst lifetime. In this study, Ga is introduced to effectively assists the defluorination of poisoned Al active sites, leading to highly efficient CF4 decomposition at 600 °C with a catalytic lifetime exceeding 1,000 hours. 27 Al and 71 Ga magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) showed that the introduced Ga exists as tetracoordinated Ga sites (GaIV ), which readily dissociate water to form Ga-OH. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density function theory (DFT) calculations confirmed that Ga-OH assists the defluorination of poisoned Al active sites via a dehydration-like process. As a result, the Ga/Al2 O3 catalyst achieved 100 % CF4 decomposition keeping an ultra-long catalytic lifetime and outperforming reported results. This work proposes a new approach for efficient and long-term CF4 decomposition by promoting the regeneration of active sites.

6.
Angew Chem Int Ed Engl ; 62(43): e202308891, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37455282

RESUMO

Tremendous progress has been made in the field of electrochemical energy storage devices that rely on potassium-ions as charge carriers due to their abundant resources and excellent ion transport properties. Nevertheless, future practical developments not only count on advanced electrode materials with superior electrochemical performance, but also on competitive costs of electrodes for scalable production. In the past few decades, advanced carbon materials have attracted great interest due to their low cost, high selectivity, and structural suitability and have been widely investigated as functional materials for potassium-ion storage. This article provides an up-to-date overview of this rapidly developing field, focusing on recent advanced and mechanistic understanding of carbon-based electrode materials for potassium-ion batteries. In addition, we also discuss recent achievements of dual-ion batteries and conversion-type K-X (X=O2 , CO2 , S, Se, I2 ) batteries towards potential practical applications as high-voltage and high-power devices, and summarize carbon-based materials as the host for K-metal protection and possible directions for the development of potassium energy-related devices as well. Based on this, we bridge the gaps between various carbon-based functional materials structure and the related potassium-ion storage performance, especially provide guidance on carbon material design principles for next-generation potassium-ion storage devices.

7.
Proc Natl Acad Sci U S A ; 120(14): e2219692120, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996113

RESUMO

Transforming CO2 into valuable chemicals is an inevitable trend in our current society. Among the viable end-uses of CO2, fixing CO2 as carbon or carbonates via Li-CO2 chemistry could be an efficient approach, and promising achievements have been obtained in catalyst design in the past. Even so, the critical role of anions/solvents in the formation of a robust solid electrolyte interphase (SEI) layer on cathodes and the solvation structure have never been investigated. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in two common solvents with various donor numbers (DN) have been introduced as ideal examples. The results indicate that the cells in dimethyl sulfoxide (DMSO)-based electrolytes with high DN possess a low proportion of solvent-separated ion pairs and contact ion pairs in electrolyte configuration, which are responsible for fast ion diffusion, high ionic conductivity, and small polarization. The 3 M DMSO cell delivered the lowest polarization of 1.3 V compared to all the tetraethylene glycol dimethyl ether (TEGDME)-based cells (about 1.7 V). In addition, the coordination of the O in the TFSI- anion to the central solvated Li+ ion was located at around 2 Å in the concentrated DMSO-based electrolytes, indicating that TFSI- anions could access the primary solvation sheath to form an LiF-rich SEI layer. This deeper understanding of the electrolyte solvent property for SEI formation and buried interface side reactions provides beneficial clues for future Li-CO2 battery development and electrolyte design.

8.
J Environ Sci (China) ; 123: 65-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522015

RESUMO

Air pollutant emissions represent a critical challenge in the green development of the non-ferrous metallurgy industry. This work studied the emission characteristics, formation mechanisms, phase transformation and separation of typical air pollutants, such as heavy metal particles, mercury, sulfur oxides and fluoride, during non-ferrous smelting. A series of purification technologies, including optimization of the furnace throat and high-temperature discharge, were developed to collaboratively control and recover fine particles from the flue gas of heavy metal smelting processes, including copper, lead and zinc. Significant improvements have been realized in wet scrubbing technology for removing mercury, fluoride and SO2 from flue gas. Gas-liquid sulfidation technology by applying H2S was invented to recycle the acid scrubbing wastewater more efficiently and in an eco-friendly manner. Based on digital technology, a source reduction method was designed for sulfur and fluoride control during the whole aluminum electrolysis process. New desulfurization technologies were developed for catalytic reduction of the sulfur content in petroleum coke at low temperature and catalytic reduction of SO2 to elemental sulfur. This work has established the technology for coupling multi-pollutant control and resource recovery from the flue gas from non-ferrous metallurgy, which provides the scientific theoretical basis and application technology for the treatment of air pollutants in the non-ferrous metallurgy industry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Mercúrio , Gases , Fluoretos , Metalurgia , Poluentes Atmosféricos/análise , Mercúrio/análise , Enxofre , Tecnologia , Poluição do Ar/prevenção & controle
9.
Water Res ; 229: 119393, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442270

RESUMO

Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for biological nitrogen removal from ammonium-rich wastewater. However, there are mechanistic issues unsolved regarding the low microbial electron transfer and undesired accumulation of nitrate in treated water, limiting its widespread engineering applications. We found that the addition of pyrite (1 g L-1 reactor), an earth-abundant iron-bearing sulfide mineral, to the anammox system significantly improved the nitrogen removal rate by 52% in long-term operation at a high substrate shock loading (3.86 kg N m-3 d-1). Two lines of evidence were presented to unravel the underlying mechanisms of the pyrite-induced enhancement. Physiochemical evidence indicated that an increase of cytochromes c and Fe-S protein was responsible for the accelerated electron transfer among metabolic enzymes. Multi-omics evidence showed that the depletion of nitrate was attributed to the Fe-N-S cycle driven by nitrate-dependent Fe(II) oxidation and S-based denitrification. This study deepens our understanding of the roles of electron transfer and the Fe-N-S cycle in anammox systems, providing a fundamental basis for the development of mediators in the anammox process for practical implications.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/metabolismo , Oxidação Anaeróbia da Amônia , Elétrons , Compostos de Amônio/metabolismo , Oxirredução , Ferro , Sulfetos , Reatores Biológicos , Desnitrificação , Nitrogênio/metabolismo
10.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365771

RESUMO

Capacitive deionization is an emerging desalination technology with mild operation conditions and high energy efficiency. However, its application is limited due to the low deionization capacity of traditional capacitive electrodes. Herein, we report a novel dual-ion capacitive deionization system with a lithium-ion battery cathode LiMn2O4/C and a sodium-ion battery anode NaTi2(PO4)3/C. Lithium ions could enhance the charge transfer during CDI desalination, while NaTi2(PO4)3/C provided direct intercalation sites for sodium ions. The electrochemical capacities of the battery electrodes fitted well, which was favorable for the optimization of the desalination capacity. The low potential of the redox couple Ti3+/Ti4+ (-0.8 V versus Ag/AgCl) and intercalation/deintercalation behaviors of sodium ions that suppressed hydrogen evolution could enlarge the voltage window of the CDI process to 1.8 V. The novel CDI cell achieved an ultrahigh desalination capacity of 140.03 mg·g-1 at 1.8 V with an initial salinity of 20 mM, revealing a new direction for the CDI performance enhancement.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36078322

RESUMO

Capacitive deionization (CDI) is an emerging eco-friendly desalination technology with mild operation conditions. However, the energy consumption of CDI has not yet been comprehensively summarized, which is closely related to the economic cost. Hence, this study aims to review the energy consumption performances and mechanisms in the literature of CDI, and to reveal a future direction for optimizing the consumed energy. The energy consumption of CDI could be influenced by a variety of internal and external factors. Ion-exchange membrane incorporation, flow-by configuration, constant current charging mode, lower electric field intensity and flowrate, electrode material with a semi-selective surface or high wettability, and redox electrolyte are the preferred elements for low energy consumption. In addition, the consumed energy in CDI could be reduced to be even lower by energy regeneration. By combining the favorable factors, the optimization of energy consumption (down to 0.0089 Wh·gNaCl-1) could be achieved. As redox flow desalination has the benefits of a high energy efficiency and long lifespan (~20,000 cycles), together with the incorporation of energy recovery (over 80%), a robust future tendency of energy-efficient CDI desalination is expected.

12.
Angew Chem Int Ed Engl ; 61(44): e202212640, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36074055

RESUMO

Carbon dioxide electroreduction (CO2 RR) is a sustainable way of producing carbon-neutral fuels. Product selectivity in CO2 RR is regulated by the adsorption energy of reaction-intermediates. Here, we employ differential phase contrast-scanning transmission electron microscopy (DPC-STEM) to demonstrate that Sn heteroatoms on a Ag catalyst generate very strong and atomically localized electric fields. In situ attenuated total reflection infrared spectroscopy (ATR-IR) results verified that the localized electric field enhances the adsorption of *COOH, thus favoring the production of CO during CO2 RR. The Ag/Sn catalyst exhibits an approximately 100 % CO selectivity at a very wide range of potentials (from -0.5 to -1.1 V, versus reversible hydrogen electrode), and with a remarkably high energy efficiency (EE) of 76.1 %.

13.
Environ Pollut ; 312: 120072, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064056

RESUMO

Elucidating the mechanisms of heavy metal (HM) adsorption on clay minerals is key to solving HM pollution in soil. In this study, the adsorption of four HM atoms (As, Cd, Cr, and Hg) on the illite(001) surface was investigated using density functional theory calculations. Different adsorption configurations were investigated and the electronic properties (i.e., adsorption energy (Ead) and electron transfer) were analyzed. The Ead values of the four HM atoms on the illite(001) surface were found to be As > Cr > Cd > Hg. The Ead values for the most stable adsorption configurations of As, Cr, Cd, and Hg were -1.8554, -0.7982, -0.3358, and -0.2678 eV, respectively. The As atoms show effective chemisorption at all six adsorption sites, while Cd, Cr, and Hg atoms mainly exhibited physisorption. The hollow and top (O) sites were more favorable than the top (K) sites for the adsorption of HM atoms. The Gibbs free energy results show that the illite(001) surface was energetically favorable for the adsorption of As and Cr atoms under the influence of 298 K and 1 atm. After adsorption, there was a redistribution of positions and reconfiguration of the chemical bonding of the surface atoms, with a non-negligible influence around the upper surface atoms. Bader charge analysis shows electrons were transferred from the surface to the HM atoms, and a strong correlation between the valence electron variations and the adsorption energy was observed. HM atoms had a high electronic state overlap with the surface O atoms near the Fermi energy level, indicating that the surface O atoms, though not the topmost atoms around the surface, significantly influence HM adsorption. The above results show illite(001) preferentially adsorbed As among all four investigated HM atoms, indicating that soils containing a high proportion of illite might be more prone to As pollution.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Adsorção , Cádmio/análise , Argila , Poluição Ambiental/análise , Mercúrio/análise , Metais Pesados/análise , Minerais/química , Solo/química , Poluentes do Solo/análise
15.
Angew Chem Int Ed Engl ; 61(31): e202206947, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642755

RESUMO

Microplastics (MPs) are one of the emerging contaminants in environmental media, and they have raised great concern because they are resistant to degradation and persist in ecosystems. Although numerous advanced technologies have been developed, suitable technologies are still lacking for degradation of widespread MPs in the natural environment. We have discovered that MPs can be degraded exceptionally rapidly in frozen environments. Taking polystyrene (PS) as an example, its degradation rate in ice (-20 °C) is surprisingly competitive to most artificial technologies. PS particles are trapped and squeezed to achieve excited state (3 PS*) in the narrow space of the liquid layer between ice crystals, which further react with the highly concentrated dioxygen to selectively produce singlet oxygen (1 O2 ). The 1 O2 boosts PS oxidation in the liquid layer thus further causing accelerated degradation at freezing temperature. This finding offers a highly efficient pathway for degradation of MPs and it sheds light on an unusual MPs disposal mechanisms in nature.

16.
Sci Total Environ ; 842: 156937, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753491

RESUMO

Utilizing nanoscale zero valent iron (nZVI) to purify groundwater contaminated by arsenic species [As(III/V)] is an efficient technology, but the fast and severe aggregation of nZVI limits its practical applications. Herein, nZVI was anchored onto the mussel-inspired polydopamine-coated cellulose nanocrystals (CNCs-PDA-nZVI) as an efficient material for As groundwater remediation. In this set, the introduction of nZVI was expected to significantly enhance the arsenic removal property, while cellulose nanocrystals (CNCs) endowed nZVI with ultrahigh dispersibility. The batch results showed that the maximum As adsorption capacities of CNCs-PDA-nZVI (i.e., 333.3 mg g-1 and 250.0 mg g-1 for As(III) and As(V), respectively) were ten times higher compared with those of pristine CNCs. The kinetics results revealed that chemical adsorption was dominant for As adsorption. The isotherms indicated that a homogeneous adsorption for As(III) and heterogenous adsorption for As(V) on the surface of CNCs-PDA-nZVI. The removal mechanisms for As by CNCs-PDA-nZVI included adsorption-oxidation, coprecipitation and inner-sphere complexation. Overall, the excellent arsenic removal efficiency makes CNCs-PDA-nZVI a promising material for the remediation of As polluted groundwater, and this in-situ anchoring strategy can be extended to overcome the aggregation bottleneck of other nanoparticles for various applications.


Assuntos
Arsênio , Água Subterrânea , Nanopartículas , Poluentes Químicos da Água , Adsorção , Arsênio/análise , Celulose , Água Subterrânea/química , Ferro/química , Poluentes Químicos da Água/análise
18.
J Am Chem Soc ; 144(7): 3039-3049, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35112839

RESUMO

Electrochemical CO2 reduction is a promising way to mitigate CO2 emissions and close the anthropogenic carbon cycle. Among products from CO2RR, multicarbon chemicals, such as ethylene and ethanol with high energy density, are more valuable. However, the selectivity and reaction rate of C2 production are unsatisfactory due to the sluggish thermodynamics and kinetics of C-C coupling. The electric field and thermal field have been studied and utilized to promote catalytic reactions, as they can regulate the thermodynamic and kinetic barriers of reactions. Either raising the potential or heating the electrolyte can enhance C-C coupling, but these come at the cost of increasing side reactions, such as the hydrogen evolution reaction. Here, we present a generic strategy to enhance the local electric field and temperature simultaneously and dramatically improve the electric-thermal synergy desired in electrocatalysis. A conformal coating of ∼5 nm of polytetrafluoroethylene significantly improves the catalytic ability of copper nanoneedles (∼7-fold electric field and ∼40 K temperature enhancement at the tips compared with bare copper nanoneedles experimentally), resulting in an improved C2 Faradaic efficiency of over 86% at a partial current density of more than 250 mA cm-2 and a record-high C2 turnover frequency of 11.5 ± 0.3 s-1 Cu site-1. Combined with its low cost and scalability, the electric-thermal strategy for a state-of-the-art catalyst not only offers new insight into improving activity and selectivity of value-added C2 products as we demonstrated but also inspires advances in efficiency and/or selectivity of other valuable electro-/photocatalysis such as hydrogen evolution, nitrogen reduction, and hydrogen peroxide electrosynthesis.

19.
Eco Environ Health ; 1(4): 229-243, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077254

RESUMO

Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36612838

RESUMO

Capacitive deionization (CDI) is a newly developed desalination technology with low energy consumption and environmental friendliness. The surface area restricts the desalination capacities of traditional carbon-based CDI electrodes while battery materials emerge as CDI electrodes with high performances due to the larger electrochemical capacities, but suffer limited production of materials. LiMn2O4 is a massively-produced lithium-ion battery material with a stable spinel structure and a high theoretical specific capacity of 148 mAh·g-1, revealing a promising candidate for CDI electrode. Herein, we employed spinel LiMn2O4 as the cathode and activated carbon as the anode in the CDI cell with an anion exchange membrane to limit the movement of cations, thus, the lithium ions released from LiMn2O4 would attract the chloride ions and trigger the desalination process of the other side of the membrane. An ultrahigh deionization capacity of 159.49 mg·g-1 was obtained at 1.0 V with an initial salinity of 20 mM. The desalination capacity of the CDI cell at 1.0 V with 10 mM initial NaCl concentration was 91.04 mg·g-1, higher than that of the system with only carbon electrodes with and without the ion exchange membrane (39.88 mg·g-1 and 7.84 mg·g-1, respectively). In addition, the desalination results and mechanisms were further verified with the simulation of COMSOL Multiphysics.


Assuntos
Lítio , Purificação da Água , Purificação da Água/métodos , Íons , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA